Abstract

Abstract Dynamic scheduling of manufacturing systems has primarily involved the use of dispatching rules. In the context of conventional job shops, the relative performance of these rules has been found to depend upon the system attributes, and no single rule is dominant across all possible scenarios. This indicates die need for developing a scheduling approach which adopts a state-dependent dispatching rule selection policy. The importance of adapting the dispatching rule employed to the current state of the system is even more critical in a flexible manufacturing system because of alternative machine routing possibilities and me need for increased coordination among various machines. This study develops a framework for incorporating machine learning capabilities in intelligent scheduling. A pattern-directed method, with a built-in inductive learning module, is developed for heuristic acquisition and refinement. This method enables the scheduler to classify distinct manufacturing patterns and to generate...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.