Abstract

Different kinds of swarm intelligence algorithm obtain superior performances in solving complex optimization problems and have been widely used in path planning of drones. Due to their own characteristics, the optimization results may vary greatly in different dynamic environments. In this paper, a scheduling technology for swarm intelligence algorithms based on deep Q-learning is proposed to intelligently select algorithms to realize 3D path planning. It builds a unique path point database and two basic principles are proposed to guide model training. Path planning and network learning are separated by the proposed separation principle and the optimal selection principle ensures convergence of the model. Aiming at the problem of reward sparsity, the comprehensive cost of each path point in the whole track sequence is regarded as a dynamic reward. Through the investigation of dynamic environment conditions such as different distances and threats, the effectiveness of the proposed method is validated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call