Abstract

In this paper, intelligent reflecting surface (IRS) technology is employed to enhance physical layer security (PLS) for spectrum sharing communication systems with orthogonal frequency division multiplexing (OFDM). Aiming to improve the secondary users’ secrecy rates, a design problem for jointly optimizing the transmission beamforming of secondary base station (SBS), the IRS’s reflecting coefficient and the channel allocation is formulated under the constraints of the requirements of minimum data rates of primary users and the interference between users. As the scenario is highly complex, it is quite challenging to address the non-convexity of the optimization problem. Thus, a deep reinforcement learning (DRL) based approach is taken into consideration. Specifically, we use dueling double deep Q networks (D3QN) and soft Actor–Critic (SAC) to solve the discrete and continuous action space optimization problems, respectively, taking full advantage of the maximum entropy RL algorithm to explore all possible optimal paths. Finally, simulation results show that our proposed approach has a great improvement in security transmission rate compared with the scheme without IRS and OFDM, and our proposed D3QN-SAC approach is more effective than other approaches in terms of maximum security transmission rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call