Abstract
As the functions of mobile applications become more and more complex, the crowdsourcing testing puts higher demands on the professional skills of testers. Therefore, it is an important factor to ensure test quality how to effectively match test task requirements with test personnel's skill level and achieve accurate crowdsourcing test task recommendation. This paper proposes a crowdsourcing test task recommendation algorithm for mobile applications based on deep learning. Firstly, feature analysis is carried out for testing tasks and testers, and feature systems are designed respectively. Second, the resulting characteristic data is used as input data for the Stacked Marginalized Denoising Autoencoder (SMDA). The deep feature data learned from SMDA are combined as the input of Deep Neural Networks (DNN). Finally, the learning ability of DNN is used for prediction. Experimental results show that the proposed algorithm has obvious advantages in both performance and training time compared with CDL and AUTOSVD ++, which verifies the effectiveness of the proposed algorithm. The proposed algorithm can recommend testing tasks to appropriate testers and improve the precision of the algorithm.
Highlights
本文通过对移动应用众包测试推荐机制进行深 度分析,发现解决这一问题的关键在于数据稠密化 过程中具有封闭式数据计算能力。 而解决这一问题 的关键性技术,堆叠边缘降噪自动编码器 SMDA[6⁃7] 一方面可以对测试人员和测试项目的输入向量进行 无限最大化次数加噪,另一方面计算复杂度低且具 有良好的可扩展性。 然而,SMDA 与 DNN 模型的结 合却 面临因此需要解决 2 个 问 题: 1 如 何 利 用 SMDA 来初始化 DNN 模型;2通过何种方式将 2 个 模型结合到一起。
名称 CPU 内存 GPU 操作系统 内核版本 Python 版本 TensorFlow 版本
Summary
摘 要:随着移动应用功能日趋复杂,众包测试对测试人员的专业技能提出更高要求。 因此,如何高 效匹配测试任务需求与测试人员技能水平,实现精准的众包测试任务推荐是保证测试质量的重要因 素。 提出一种基于深度学习的移动应用众包测试任务推荐算法。 针对测试任务和测试人员进行特征 分析,分别设计特征体系;将得到的特征数据作为堆叠式边缘降噪自动编码器( stacked marginalized denoising autoencoder,SMDA) 输入数据,将 SMDA 学习到的深层特征数据结合作为深度神经网络 (deep neural networks,DNN)的输入;利用 DNN 的学习能力进行预测。 实验结果表明:所提算法相较 于 CDL 和 AutoSVD++等算法无论是性能还是训练时间都有明显优势,验证了算法的有效性。 所提算 法可以将测试任务推荐给适合的测试人员并提高了推荐算法的精细度。 在近年来,国内外众多研究人员尝试将深度学 习引入到推荐算法领域[2] ,其中以基于深度神经网 络的协同推荐模型最有影响力[3⁃4] 。 该算法主要是 利用深度神经网络 DNN 对高阶特征交互行为的学 习能力来实现预测和推荐[5] 。 虽然 DNN 算法本身 具有优秀的深层特征提取能力和参数学习能力,但 是推荐算法领域的输入数据并不是图像和音频领域 的那种稠密数据,推荐算法领域数据具有的稀疏性 往往导致算法模型陷入局部最优,导致算法模型推 荐效能打折。 因此针对基于深度学习的移动应用众 包测试推荐算法的研究,必须考虑数据稀疏度不同 对模型的影响,并避免算法模型陷入局部最优。
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.