Abstract

Timely safety hazard management can reduce the probability of safety accidents at construction sites. However, the formulation of safety hazard management measures is a time-consuming and labor-intensive process. This paper describes a safety hazard knowledge question answering method to automatically generate safety hazard management measures. The method builds a deep learning network fusing Bidirectional Encoder Representation from Transformer (BERT), Bidirectional Gated Recurrent Unit (BiGRU), and Self-attention mechanism to extract text semantic features. Taking the text semantic feature extraction mechanism as a subnet, an answer selection model based on a Siamese neural network is built to implement the deep matching of safety hazard questions and management measures. Experimental results from hydraulic engineering construction demonstrate that the proposed model outperforms the existing answer selection model. Meanwhile, a question answering system based on the proposed model is developed to address safety hazard management problems, which verifies the reliability and applicability of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.