Abstract

This paper presents the design, stability analysis and experimental validation of a computationally non-intensive, model-free, intelligent proportional-integral (iPI) controller for flexible joint manipulators. In order to show the performance of the iPI controller, it is compared with classical proportional-integral and proportional-integral-derivative controllers. Based on this comparison, the iPI-controlled system achieved a better than 60% tracking accuracy for both kane trajectory and sine input tracking. The iPI controller also significantly reduced transient swings in the flexible joint of the manipulator, when tracking a train of pulses. Moreover, the iPI controlled system successfully eliminated both disturbances and noise effects from the dynamics of the manipulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call