Abstract

Numerical simulation models are commonly used to analyze and simulate urban waterlogging risk. However, the computational efficiency of numerical models is too low to meet the requirements of urban emergency management. In this study, a new method was established by combining a long short-term memory neural network model with a numerical model, which can quickly predict the waterlogging depth of a city. First, a numerical model was used to simulate and calculate the ponding depth of each ponding point under different rainfall schemes. Using the simulation results as training samples, the long short-term memory neural network was trained to predict and simulate the waterlogging process. The results showed that the proposed “double model” prediction model appropriately reflected the relationship between the changes in waterlogging depth and the temporal and spatial changes in rainfall, and the accuracy and speed of computation were higher than those of the numerical model alone. The simulation speed of the “double model” was 324,000 times that of the numerical model alone. The proposed “double model” method provides a new idea for the application of artificial intelligence technology in the field of disaster prevention and reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.