Abstract

The security issue of mobile robots has attracted considerable attention in recent years. In this article, we propose an intelligent physical attack to trap mobile robots into a preset position by learning the obstacle-avoidance mechanism from external observation. The salient novelty of our work lies in revealing the possibility that physical-based attacks with intelligent and advanced design can present real threats while without prior knowledge of the system dynamics or access to the internal system. This kind of attack cannot be handled by countermeasures in traditional cyberspace security. To practice, the cornerstone of the proposed attack is to actively explore the complex interaction characteristic of the victim robot with the environment and learn the obstacle-avoidance knowledge exhibited in the limited observations of its behaviors. Then, we propose shortest-path and hands-off attack algorithms to find efficient attack paths from the tremendous motion space, achieving the driving-to-trap goal with low costs in terms of path length and activity period, respectively. The convergence of the algorithms is proved and the attack performance bounds are further derived. Extensive simulations and real-life experiments illustrate the effectiveness of the proposed attack, beckoning future investigation for the new physical threats and defense on robotic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call