Abstract

The Mobile Robot Path Problem looks to find the optimal shortest path from the starting point to the target point with collision-free for a mobile robot. This is a popular issue in robotics and in this paper the environment is considered as static and represented as a bidirectional grid map. Besides, the novel optimal method Dhouib-Matrix-SPP (DM-SPP) is applied to create the optimal shortest path for a mobile robot in a static environment. DM-SPP is a greedy method based on a column row navigation in the distance matrix and characterized by its rapidity to solve sparse graphs. The comparative analysis is conducted by applying DM-SPP on thirteen test cases and comparing its results to the results given by four metaheuristics the Max-Min Ant System, the Ant System with punitive measures, the A* and the Improved Hybrid A*. The outcomes acquired from different scenarios indicate that the proposed DM-SPP method can rapidly outperform the four predefined artificial intelligence methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.