Abstract

Building atrium design is crucial to maintaining a sustainable built environment and providing thermal comfort to occupants. This study proposes a parametric framework to optimize the atrium’s geometry for environmental performance and thermal comfort improvement. It integrates the parametric design, performance simulation, and multi-objective optimization in the Rhino and Grasshopper platform to realize automatic optimization. The atrium’s well index, shape ratio, volume ratio, position index, and inner interface window-to-wall ratio were set as optimized factors. For the optimization objectives, useful daylight illuminance (UDI), energy use intensity (EUI), and the discomfort time percentage (DTP) were chosen as metrics for the measurement of daylighting, energy use efficiency, and thermal comfort, respectively. Moreover, a geometry mapping method is developed; it can turn atrium shape into rectangular profiles. Thus, the framework can apply to general buildings. To validate the effectiveness of the proposed framework, an atrium optimization case study is conducted for a villa in Poland. According to the optimization results, the performance of the compared three objectives are improved by 43.20%, 15.52%, and 3.89%, respectively. The running time for the optimization is about 36 s per solution, which greatly reduce the human and time cost compared to the traditional working method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.