Abstract

The innovation of this study was to develop a novel biodegradable intelligent packaging based on chitosan/fucoidan combined with different amounts (1, 3 and 5 wt% on chitosan basis) of coleus grass (Plectranthus scutellarioides) leaves anthocyanins (CGL) to monitor the spoilage of salmon (Salmo salar L.). The addition of fucoidan improved the barrier and mechanical properties of the chitosan films (CS) due to hydrogen bonds and intermolecular electrostatic interactions. Moreover, the addition of CGL not only improved the physical properties but also improved the biological activity of chitosan/fucoidan film (CF). The DPPH and ABTS radical scavenging activity of CF contained 5 wt% CGL was 1.83 and 1.75 times than CF, respectively. The inhibition zone size of CF films containing 5 wt% CGL (CF-5%CGL) was approximately 2.04 (Escherichia coli) and 2.16 (Staphylococcus aureus) times higher than that of CF. Moreover, CF-CGL displayed obvious color changes in different pH environments and is highly sensitive to ammonia gas. The CF-CGL has visible color changes during the monitoring of salmon spoilage and extended the shelf life of salmon. According to our findings, CF-CGL film might be employed as a possible intelligent packaging material for monitoring and preserving salmon in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call