Abstract
In modern warfare, it is often necessary for the operator to control the UAV cluster from a ground control station to perform an attack task. However, the absence of an effective method for optimizing the human–computer interface in ground control stations for UAV clusters leads to usability difficulties and heightens the probability of human errors. Hence, we propose an optimization framework for human–computer interaction interfaces within UAV ground control stations, rooted in interface-essential elements. Specifically, the interface evaluation model was formulated by combining the Salient, Effort, Expectancy, and Value (SEEV) framework with the essential factor mutation cost of the quantified interface. We employed the SEEV–ant colony algorithm to address the challenge of optimizing the interface design within this context. For a typical UAV cluster attack mission, we optimized the human–computer interaction interfaces of the three mission stages based on the proposed SEEV-AC model. We conducted extensive simulation experiments in these optimized interfaces, and used eye-movement indicators to evaluate the effectiveness of the interface optimization model. Based on the experimental results, divergence is reduced by 11.59%, and the fitness of the optimized interface is increased from 1.34 to 3.42. The results show that the proposed intelligent interface optimization method can effectively improve the interface design and reduce the operator’s workload.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.