Abstract

This study deals with the neuro-fuzzy (NF) modelling of a real industrial winding process in which the acquired NF model can be exploited to improve control performance and achieve a robust fault-tolerant system. A new simulator model is proposed for a winding process using non-linear identification based on a recurrent local linear neuro-fuzzy (RLLNF) network trained by local linear model tree (LOLIMOT), which is an incremental tree-based learning algorithm. The proposed NF models are compared with other known intelligent identifiers, namely multilayer perceptron (MLP) and radial basis function (RBF). Comparison of our proposed non-linear models and associated models obtained through the least square error (LSE) technique (the optimal modelling method for linear systems) confirms that the winding process is a non-linear system. Experimental results show the effectiveness of our proposed NF modelling approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.