Abstract

UV inactivity and fluorescence irradiance of various organic substances are the major drawbacks for a wide applicability of UV based TOC assessment models, especially in drinking water utilities and environmental fields. The adoption of an intelligent model is the key factor to access a reliable and effective detection. The accurate training of the artificial neural network model and backward elimination of less significant parameters, conferred more predictive properties to TOC detection. This led to an efficient optimal TOC detection model based on turbidity, UV254 absorbance and true color. The validation of model performance was investigated through application of untrained scenarios. The outcome of the validation analysis showed a correlation coefficient of 0.87 and root mean square error of 0.48 while the training performance of the model showed 0.95 and 0.33 respectively. The results indicated that the trained ANN model was efficiently capable for TOC detection in water resources based on the main drivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.