Abstract

wireless sensor networks (WSN) in ubiquitous learning environments to enhance teaching and learning quality. WSNs can serve as a learner-to-context interface, enabling learners to interact with the learning environment while collecting contextual information. With the help of WSN virtualization technology, learners can leverage different virtualized characteristics of the state-of-the-art WSN and engage with the ubiquitous learning paradigm to gain knowledge and skills. The report examines the current state of WSN virtualization and its potential for sharing in this context. Research concerns are discussed in-depth, and an in-depth overview of the current state of the art is provided. This paper presents the fundamentals of WSN virtualization and argues for its usefulness. By allowing learners to learn while on the go in an environment that interests them, gadgets and embedded computers work together to keep students connected to their learning environment. Recent years have seen an increase in interest in deep reinforcement learning technologies. Despite the availability of several internet resources for researching this field, it might be challenging for those just getting started to design effective teaching systems for autonomous vehicles. This article offers a model for a highly effective and interactive ubiquitous learning environment system based on ubiquitous computing technology. An educational system based on deep reinforcement learning and system development is developed in this project using the WSNV-ES method. The web-based system that has been designed can do the following: settings for reinforcing student success, learning scripts to run, and the learning state to monitor are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call