Abstract
In this paper, an intelligent multi-microgrid (MMG) energy management method is proposed based on deep neural network (DNN) and model-free reinforcement learning (RL) techniques. In the studied problem, multiple microgrids are connected to a main distribution system and they purchase power from the distribution system to maintain local consumption. From the perspective of the distribution system operator (DSO), the target is to decrease the demand-side peak-to-average ratio (PAR), and to maximize the profit from selling energy. To protect user privacy, DSO learns the MMG response by implementing a DNN without direct access to user’s information. Further, the DSO selects its retail pricing strategy via a Monte Carlo method from RL, which optimizes the decision based on prediction. The simulation results from the proposed data-driven deep learning method, as well as comparisons with conventional model-based methods, substantiate the effectiveness of the proposed approach in solving power system problems with partial or uncertain information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.