Abstract

Abstract: Recommender system are systems which provide you with a similar type of products or solutions and results, you are looking for. For example, if you go to a Clothing shop, you ask for a T-shirt with different designs or different colors, Then the shopkeeper recommends you with different colors. This recommending task for websites is done by recommending systems. A recommendation engine uses several algorithms to filter data and then recommends the most relevant items to consumers. A Movie Recommender system will recommend the most relevant and connected movie for the given category of search, if a user visits a movie site for the first time, the site will have no previous history of that user. In such cases, the user can search for their movie recommendations based on genre, year of release, director or actor and their favorite movie itself to get a new movie recommendation. Keywords: Movie Recommendation Systems, Content-Based Filtering, Movie recommendation, machine learning project

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.