Abstract

As the dynamic characteristics of the linear ultrasonic motor (LUSM) are highly nonlinear and time varying, and the model difficult to obtain, it is difficult to design a suitable controller to achieve high-precision position control using conventional control techniques. An intelligent control system using an adaptive recurrent cerebellar model articulation controller (RCMAC) is proposed for the motion control of the LUSM. In this study, by adding feedback connections in the association memory space, the proposed dynamic structure of RCMAC has superior capability to the conventional static cerebellar model articulation controller in efficient learning mechanism and dynamic response. The control laws of the intelligent motion control system are derived on the basis of the H∞ control technique so that robust tracking performance can be achieved. By using the proposed intelligent motion control system, the LUSM control system possesses the advantages of high-precision tracking performance with robustness to system uncertainties. The effectiveness of the proposed control system is verified by hardware experiments of the LUSM motion control under the conditions of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with an integral-proportional position control system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.