Abstract

Rational design of biocompatible nanoplatforms simultaneously realizing multimodal imaging and therapeutic functions is meaningful to cancer treatment. Herein, the MoS2–CuO heteronanocomposites are designed by integrating semiconductor CuO and flower-like MoS2 via a two-step hydrothermal method. After loading bovine serum albumin (BSA) and immunoadjuvant imiquimod (R837), the obtained MoS2–CuO@BSA/R837 (MCBR) nanoplatforms realize the excellent computed tomography/infrared thermal/magnetic resonance multi-mode bioimaging as well as significantly enhanced antitumor efficacy of synergetic photothermal therapy (PTT)/chemodynamic therapy (CDT)/immunotherapy. In this nanoplatform, the semiconductor CuO exhibits peroxidase-like activity, which can react with over-expressed H2O2 in tumor microenvironment (TME) to generate OH for CDT via Haber-Weiss and Fenton-like reactions. And this process can be further accelerated by the generated heat of MoS2 under 808 nm laser irradiation. More importantly, the obtained multifunctional MCBR nanoplatforms under near-infrared (NIR) irradiation would destroy tumor cells to generate tumor associated antigens (TAAs), which combine with R837 as an adjuvant to trigger strong antitumor immune responses for effectively eliminating primary tumors and metastatic tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.