Abstract

Studies have shown that fugitive emissions are dominated by a small number of sources with extremely high emission rates, known as super-emitters. These super-emitters present an opportunity to significantly reduce emissions in a cost-effective manner if they are managed effectively. This requires the ability to detect, locate, and accurately measure emissions. However, the uncertain nature of fugitive emissions presents challenges to monitoring. Existing and emerging technologies enable emissions management with varying levels of success. This paper provides a practical comparison of several fugitive emissions monitoring technologies, including handheld gas detectors, optical gas imaging cameras, vehicle-based systems, satellites, aircraft, and unmanned aerial vehicles. These technologies provide periodic monitoring of a facility and are compared to continuous monitoring technologies that monitor emissions on a 24/7 basis using fixed sensors and advanced analytics to identify and track emission plumes. Continuous monitoring with intelligent analytics has demonstrated great potential in overcoming the challenges of monitoring fugitive emissions to reduce greenhouse gases and other problematic emissions. Features, capabilities, and limitations of these technologies are explored in the context of gas facilities, including their ability to detect intermittent sources, identify unsuspected and off-site sources, and quantify emissions. The range of monitoring for each technology and safety concerns associated with their use are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call