Abstract

For maximum metal recovery, considering the movement of ore and waste during the blasting process in loading design is meaningful for reducing ore loss and ore dilution in an open-pit mine. The blast-induced rock movement (BIRM) can be directly measured; nevertheless, it is time-consuming and relative expensive. To solve this problem, a novel intelligent prediction model was proposed by using dimensional analysis and optimized artificial neural network technique in this paper based on the BIRM monitoring test in Husab Uranium Mine, Namibia and Phoenix Mine, USA. After using dimensional analysis, five input variables and one output variable were determined with both considering the dimension and physical meaning of each dimensionless variable. Then, artificial neural network technique (ANN) technique was utilized to develop an accurate prediction model, and a metaheuristic algorithm namely the Equilibrium Optimizer (EO) algorithm was applied to search the optimal hyper-parameter combination. For comparison aims, a linear model and a non-linear regression model were also performed, and the comparison results show that the provided hybrid ANN-based model can yield better prediction performance. As a result, it can be concluded that the developed intelligent model in this article has the potential to predict BIRM during bench blasting, and the analysis method and modeling process in this paper can provide a reference for solving other engineering problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call