Abstract

The Industrial Internet of Things (IIoT) plays an important role in the development of smart factories. However, the existing IIoT systems are prone to suffering from single points of failure and unable to provide stable service. Meanwhile, with the increase of node scale and network quantity, the maintenance cost presents to be higher. Such a disadvantage can be effectively compensated by the features such as security, privacy, non-tamperability and distributed deployment supported by the blockchain. In this paper, first, an intelligent manufacturing security model based on blockchain was proposed. Due to the high power consumption and low throughput of the traditional blockchain, IoT devices with limited power consumption can not work independently. Therefore, in this paper, a new Merkle Patricia tree (MPT) was adopted to extend the blockchain structure and provide fast query of node status. Second, since the MPT does not support concurrent operation and the data operation performance deteriorates with high data volume, a lock-free concurrent and cache-based Merkle Patricia tree was proposed (CMPT) to support lock-free concurrent data operation, which can improve the data operation efficiency in multi-core system. The experimental results indicate that, compared with the original MPT, the CMPT proposed in this paper effectively reduced the time complexity of data insertion and data query and improved the speed of block construction and data query.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.