Abstract

Malware is the most serious security threat, which possibly targets billions of devices like personal computers, smartphones, etc. across the world. Malware classification and detection is a challenging task due to the targeted, zero-day, and stealthy nature of advanced and new malwares. The traditional signature detection methods like antivirus software were effective for detecting known malwares. At present, there are various solutions for detection of such unknown malwares employing feature-based machine learning algorithms. Machine learning techniques detect known malwares effectively but are not optimal and show a low accuracy rate for unknown malwares. This chapter explores a novel deep learning model called deep dilated residual network model for malware image classification. The proposed model showed a higher accuracy of 98.50% and 99.14% on Kaggle Malimg and BIG 2015 datasets, respectively. The new malwares can be handled in real-time with minimal human interaction using the proposed deep residual model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.