Abstract

This paper illustrates the development of an intelligent local area signals based controller for damping low-frequency oscillations in power systems. The controller is trained offline to perform well under a wide variety of power system operating points, allowing it to handle the complex, stochastic, and time-varying nature of power systems. Neural network based system identification eliminates the need to develop accurate models from first principles for control design, resulting in a methodology that is completely data driven. The virtual generator concept is used to generate simplified representations of the power system online using time-synchronized signals from phasor measurement units at generating stations within an area of the system. These representations improve scalability by reducing the complexity of the system “seen” by the controller and by allowing it to treat a group of several synchronous machines at distant locations from each other as a single unit for damping control purposes. A reinforcement learning mechanism for approximate dynamic programming allows the controller to approach optimality as it gains experience through interactions with simulations of the system. Results obtained on the 68-bus New England/New York benchmark system demonstrate the effectiveness of the method in damping low-frequency inter-area oscillations without additional control effort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call