Abstract
This paper proposes a novel general framework for line segment perception, which is motivated by a biological visual cortex, and requires no parameter tuning. In this framework, we design a model to approximate receptive fields of simple cells. More importantly, the structure of biological orientation columns is imitated by organizing artificial complex and hypercomplex cells with the same orientation into independent arrays. Besides, an interaction mechanism is implemented by a set of self-organization rules. Enlightened by the visual topological theory, the outputs of these artificial cells are integrated to generate line segments that can describe nonlocal structural information of images. Each line segment is evaluated quantitatively by its significance. The computation complexity is also analyzed. The proposed method is tested and compared to state-of-the-art algorithms on real images with complex scenes and strong noises. The experiments demonstrate that our method outperforms the existing methods in the balance between conciseness and completeness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.