Abstract

Infections caused by multidrug-resistant bacteria continue to pose a serious threat to human health, and therefore it is important to explore the availability of antimicrobial drugs and modalities. Herein, jellyfish-type irregular mesoporous iron oxide nanoreactors containing ciprofloxacin, Janus Fe3O4@mSiO2@Cip nanoparticles (JFmS@Cip NPs), were developed for pH-responsive synergistic antimicrobial therapy in a microacidic environment. Compared with the use of symmetric nanocarriers, the asymmetric decoration on both sides of the particles allows different components to act on bacteria, Fe3O4 NPs have good magnetic and peroxidase-like catalytic activity, and the antibiotic ciprofloxacin can kill bacteria efficiently. Notably, due to the synergistic effect between different components of Janus particles, in vitro antibacterial experiments showed that JFmS@Cip NPs can kill bacteria efficiently at low concentrations, reaching an antibacterial rate of 99.6%. JFmS@Cip NPs combine multiple antibacterial properties that can be used to improve the therapeutic efficacy of current nanomedicines against drug-resistant bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call