Abstract
In the context of informatization and intelligent manufacturing systems, digital twin technology provides new technical ideas for intelligent decision-making. Aiming at instruments with high cost and low output, this paper develops low-cost high-efficiency fault diagnosis system to realize rapid feedback and fault of fault diagnosis results. The system includes three layers: data layer, control layer and output layer. In the data layer, this uses MEMS sensors and Zigbee wireless transmission network to construct a data link the physical end and the virtual model. In the control layer, this paper stores the collected twin data through cloud technology, extracts and calls relevant data according to the function module and then maps it to the output layer. In the output layer, this paper constructs a characteristics interpretation system, which divides the test set and training set through the dynamic database, to complete the classifier and results output. The results are fed back to the judgment framework and control layer to evaluate the effects of fault diagnosis and prediction, which provides a new method for model optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.