Abstract

As digital images play a vital role in multimedia content, the automatic classification of images is an open research problem. The Bag of Visual Words (BoVW) model is used for image classification, retrieval and object recognition problems. In the BoVW model, a histogram of visual words is computed without considering the spatial layout of the 2-D image space. The performance of BoVW suffers due to a lack of information about spatial details of an image. Spatial Pyramid Matching (SPM) is a popular technique that computes the spatial layout of the 2-D image space. However, SPM is not rotation-invariant and does not allow a change in pose and view point, and it represents the image in a very high dimensional space. In this paper, the spatial contents of an image are added and the rotations are dealt with efficiently, as compared to approaches that incorporate spatial contents. The spatial information is added by constructing the histogram of circles, while rotations are dealt with by using concentric circles. A weighed scheme is applied to represent the image in the form of a histogram of visual words. Extensive evaluation of benchmark datasets and the comparison with recent classification models demonstrate the effectiveness of the proposed approach. The proposed representation outperforms the state-of-the-art methods in terms of classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.