Abstract

This paper presents hybrid approaches for human identification based on electrocardiogram (ECG). The proposed approaches consist of four phases, namely data acquisition, preprocessing, feature extraction and classification. In the first phase, data acquisition phase, data sets are collected from two different databases, ECG-ID and MIT-BIH Arrhythmia database. In the second phase, noise reduction of ECG signals is performed by using wavelet transform and a series of filters used for de-noising. In the third phase, features are obtained by using three different intelligent approaches: a non-fiducial, fiducial and a fusion approach between them. In the last phase, the classification approach, three classifiers are developed to classify subjects. The first classifier is based on artificial neural network (ANN). The second classifier is based on K-nearest neighbor (KNN), relying on Euclidean distance. The last classifier is support vector machine (SVM) classification accuracy of 95% is obtained for ANN, 98 % for KNN and 99% for SVM on the ECG-ID database, while 100% is obtained for ANN, KNN, and SVM on MIT-BIH Arrhythmia database. The results show that the proposed approaches are robust and effective compared with other recent works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call