Abstract

AbstractGradient-based numerical optimization of complex engineering designs offers the promise of rapidly producing better designs. However, such methods generally assume that the objective function and constraint functions are continuous, smooth, and defined everywhere. Unfortunately, realistic simulators tend to violate these assumptions. We present a rule-based technique for intelligently computing gradients in the presence of such pathologies in the simulators, and show how this gradient computation method can be used as part of a gradient-based numerical optimization system. We tested the resulting system in the domain of conceptual design of supersonic transport aircraft, and found that using rule-based gradients can decrease the cost of design space search by one or more orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.