Abstract

AbstractWe reported an electro-driven chemomechanical hydrogel showing quick responses with worm-like motility. The principle of the motion is based on the molecular assembly reaction of cationic surfactant and negatively charged hydrogel. And direction of complexation accompanying gel contraction is controlled by changing the polarity of the applied electric field. Both thermodynamics and kinetics of surfactant binding and diffusion are investigated experimentally and theoretically. We also reported shape memory hydrogel by order-disorder transition of alkyl side chain, and some examples od friction of hydrogels showing that frictional behaviors of hydorgels do not conform to Amonton's law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.