Abstract
Forecasting the electrical load becomes important, because it can estimate electricity consumption over a certain time range. Accuracy in electric load forecasting can improve safety and reliability in the operation of power systems such as load flow, maintenance of generating units and scheduling of generating units. In this study used case study system Sulselrabar, which is currently growing, but still not much to discuss about the condition of the current system and which will come. Several methods for predicting electrical loads have been widely used, ranging from conventional to smart-based methods. In this research will be proposed method of artificial intelligence for forecasting Short Term load on Sulselrabar system. The method used is based Fuzzy Logic and Cuckoo Search Algorithm. The combination of Fuzzy logic and Cuckoo Search methods is chosen because the combination of both optimizes optimum fuzzy logic membership, so the forecasting results have a very small error. From the results of the research can be concluded that the result of load forecasting using Fuzzy Logic method optimized using Cuckoo Search Algorithm (FL-CSA) is better than Fuzzy Logic that is not optimized. The analysis results using input data 3 months before day H, to predict the load for one week on January 1 to 7 january 2014, and as a comparison used the predicted day H data. From the simulation results, the mean absolute percentage error (MAPE) is smaller using FLCSA, for the smallest MAPE on 1 January 2014 of 0.06785208%. While the highest MAPE on January 4, 2014 amounted to -0.44973%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Lontar Komputer : Jurnal Ilmiah Teknologi Informasi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.