Abstract

Renewable electricity options, such as fuel cells, solar photovoltaic, and batteries, are being integrated, which has made DC micro-grids famous. For DC micro-grid systems, a multi input interleaved non-isolated dc-dc converter is suggested by the use of coupled inductor techniques. Since it compensates for mismatches in photovoltaic devices and allows for separate and continuous power flow from these sources. The proposed converter has the benefits of high gain, a low ripple in the output voltage, minimal stress voltage across the power semiconductor devices, a low ripple in inductor current, high power density, and high efficiency. Soft-switching techniques are used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. To reduce conduction losses, minimum voltage rating MOSFETs with a low ON-resistance can be utilized. The converter can supply the required power from the load in the absence of one or two resources. Furthermore, due to the high gain of boosting voltage, the converter works in an Adaptive Neuro-Fuzzy Inference System (ANFIS). The operation principle, steady-state analysis of the proposed converter, is given and simulated utilizing MATLAB/Simulink simulation software.

Highlights

  • The penetration of distributed generation sources is causing DC micro-grid technology to evolve

  • Other than renewable energy conversion, high gain dc-dc converters are utilized in a number of applications, including high-intensity discharge lamp ballasts for vehicle headlamps, battery backup systems, electric traction, and some medical equipment [6]

  • Each source inputs are configured in a 20 V. 24 V, 3-Ah lithium-ion battery that is utilized as an element of energy storage

Read more

Summary

Introduction

The penetration of distributed generation sources is causing DC micro-grid technology to evolve. To satisfy the demands of the dc load, DC power generators generate a minimum output voltage, necessitating the use of high efficiency, high gain dc-dc converters [1]. For long-term hydropower operations, systematic recommendations on the energy ecosystem are presented in [4]. Another choice is to use a quadratic boost converter for applications requiring high gain [5]. Other than renewable energy conversion, high gain dc-dc converters are utilized in a number of applications, including high-intensity discharge lamp ballasts for vehicle headlamps, battery backup systems, electric traction, and some medical equipment [6]. The problem of a canal-top PV system and the main grid distributing power to match load demands were discussed in [9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.