Abstract

To realize parameter feedback optimization of tunnel construction in water-rich areas, a feedback analysis method for tunnel parameters under fluid–solid coupling conditions was established based on an intelligent optimization algorithm. Firstly, the numerical calculation model was established and solved using the fluid–solid coupling model. In orthogonal design analysis, the displacement of surrounding rock and pore water pressure distribution in different rock mass parameter combinations were obtained, and the learning samples needed for machine learning were established. The input group was surrounding rock displacement and pore water pressure, and the output was rock mass parameters. Then, the Gaussian process algorithm was used to obtain the nonlinear mapping relationship contained in the learning samples. A differential evolution algorithm was used to optimize the critical parameters involved in this process. Furthermore, according to the established regression model and the measured displacement and pore water pressure in the research area, differential evolution was used again to optimize the rock mass parameters and obtain the parameter feedback analysis results. Finally, the inversion values were compared with the actual measured values, and the reliability of the surrounding rock parameters obtained from the feedback analysis was verified, providing an effective method for obtaining surrounding rock parameters for similar projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call