Abstract
AbstractFeature and instance selection before classification is a very important task, which can lead to big improvements in both classifier accuracy and classifier speed. However, few papers consider the simultaneous or combined instance and feature selection for Nearest Neighbor classifiers in a deterministic way. This paper proposes a novel deterministic feature and instance selection algorithm, which uses the recently introduced Minimum Neighborhood Rough Sets as basis for the selection process. The algorithm relies on a metadata computation to guide instance selection. The proposed algorithm deals with mixed and incomplete data and arbitrarily dissimilarity functions. Numerical experiments over repository databases were carried out to compare the proposal with respect to previous methods and to the classifier using the original sample. These experiments show the proposal has a good performance according to classifier accuracy and instance and feature reduction.Keywordsinstance selectionobject selectionrough setsnearest neighbor
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.