Abstract
With the rapid development of smart manufacturing, data-driven deep learning (DL) methods are widely used for bearing fault diagnosis. Aiming at the problem of model training crashes when data are imbalanced and the difficulty of traditional signal analysis methods in effectively extracting fault features, this paper proposes an intelligent fault diagnosis method of rolling bearings based on Gramian Angular Difference Field (GADF) and Improved Dual Attention Residual Network (IDARN). The original vibration signals are encoded as 2D-GADF feature images for network input; the residual structures will incorporate dual attention mechanism to enhance the integration ability of the features, while the group normalization (GN) method is introduced to overcome the bias caused by data discrepancies; and then the model is trained to complete the classification of faults. In order to verify the superiority of the proposed method, the data obtained from Case Western Reserve University (CWRU) bearing data and bearing fault experimental equipment were compared with other popular DL methods, and the proposed model performed optimally. The method eventually achieved an average identification accuracy of 99.2% and 97.9% on two different types of datasets, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.