Abstract

In recent years, vibration-based intelligent fault diagnosis of high-voltage circuit breakers (HVCBs) exhibits excellent performance. It requires a reliable machine learning method to develop an automatically diagnostic model to recognize the mechanical state from vibration signals. However, the traditional machine learning methods tend to produce unstable diagnostic results under the case of sampling asynchrony caused by the fluctuation of the control voltage. To address this problem, an improved kernel extreme learning machine (K-ELM) called triangular global alignment kernel (TGAK) extreme learning machine (TGAK-ELM) was presented in this study, which was developed by introducing TGAK into K-ELM. The TGAK is an elastic kernel which was designed by considering all the possible alignments between samples. Therefore, it provides a flexible similarity measure for samples, resulting in the improvement of the diagnostic performance. Experiments on the 35kV HVCB verified the effectiveness of the proposed method. Compared to other state-of-the-art machine learning methods, the proposed TGAK-ELM produced better diagnostic results. And further experiments on eight datasets picked from UCR repository suggested the applicability of TGAK-ELM in other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call