Abstract

An Inertial Measurement Unit (IMU) is a significant component of a spacecraft, and its fault diagnosis results directly affect the spacecraft’s stability and reliability. In recent years, deep learning-based fault diagnosis methods have made great achievements; however, some problems such as how to extract effective fault features and how to promote the training process of deep networks are still to be solved. Therefore, in this study, a novel intelligent fault diagnosis approach combining a deep residual convolutional neural network (CNN) and a data preprocessing algorithm is proposed. Firstly, the short-time Fourier transform (STFT) is adopted to transform the raw time domain data into time–frequency images so the useful information and features can be extracted. Then, the Z-score normalization and data augmentation strategies are both explored and exploited to facilitate the training of the subsequent deep model. Furthermore, a modified CNN-based deep diagnosis model, which utilizes the Parameter Rectified Linear Unit (PReLU) as activation functions and residual blocks, automatically learns fault features and classifies fault types. Finally, the experiment’s results indicate that the proposed method has good fault features’ extraction ability and performs better than other baseline models in terms of classification accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call