Abstract

Fault detection and diagnosis is critical to improve the reliability and availability in induction motors (IMs). Machine learning and deep learning techniques have been widely used in induction motor fault detection and diagnosis. In this paper, we propose a new deep learning model based on a dilated convolutional neural network (D-CNN) for detecting bearing faults in IMs. The proposed model works directly on raw vibration signals without any hand-crafted feature extraction process. Our model can incorporate global context without losing important local information by stacking dilated convolutions with an increasing width. Numerical results show that the proposed D-CNN is not only capable of classifying normal signals perfectly but also can achieve higher accuracy than conventional techniques under noisy environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.