Abstract

FastSLAM is a well-known solution to the simultaneous localization and mapping (SLAM) problem. In FastSLAM, a nonparametric filter is used for the mobile robot pose (position and orientation) estimation, and a parametric filter is used for the feature location's estimation. The performance of the conventional FastSLAM degrades over time due to the particle depletion and unknown statistic noises. In this paper, intelligent FastSLAM (IFastSLAM) is proposed. In this approach, an evolutionary filter (EF) searches stochastically along with the state space for the best robot's pose estimation and an adaptive fuzzy unscented Kalman filter (AFUKF) is used for the feature location's estimation. In AFUKF, a fuzzy inference system (FIS) supervises the performance of the unscented Kalman filter with the aim of reducing the mismatch between the theoretical and actual covariance of the innovation sequences in order to get better consistency. We demonstrate the proposed algorithm with simulations and real-world experiments. The results show that the proposed method is effective, and its performance outperforms conventional FastSLAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call