Abstract

Fractal pore structure exists widely in natural reservoir and dominates its transport property. For that, more and more effort is devoted to investigate the control mechanism on mass transfer in such a complex and multi-scale system. Apparently, effective characterization of the fractal structure is of fundamental importance. Although the newly emerged concept of complexity assembly clarified the complexity types and their assembly mechanism in a fractal system, equivalent extraction of the complexity types is the key for effective characterization. For these, we proposed a deep learning-based method to extract the original and behavioral complexity assembled in bed-packing fractal porous media for simplification and without loss of generality. In detail, the UNeXt network model was trained to obtain the independent connected regions of scaling objects with different scales, the edge detection and clustering analysis algorithms were employed to extract the number-size relationship between two successive scaling objects, and the unique inversion of fractal behavior was realized by taking the number-size model and fractal topography together. Consequently, an equivalent characterization method for fractal complex pore structure was developed based on the concept of complexity assembly. Our investigation provides a theoretical guidance and method reference for the quantitative characterization of fractal porous media that will guarantee the fundamental requirement for the accurate evaluation of the transport properties of natural reservoir.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.