Abstract

This article addresses the dynamic positioning control problem of a nonlinear unmanned marine vehicle (UMV) system subject to network communication constraints and deny-of-service (DoS) attack, where the dynamics of UMV are described by a Takagi-Sugeno (T-S) fuzzy system (TSFS). In order to save limited communication resource, a new intelligent event-triggering mechanism is proposed, in which the event triggering threshold is optimized by a Q -learning algorithm. Then, a switched system approach is proposed to deal with the aperiodic DoS attack occurring in the communication channels. With a proper piecewise Lyapunov function, some sufficient conditions for global exponential stability (GES) of the closed-loop nonlinear UMV system are derived, and the corresponding observer and controller gains are designed via solving a set of matrix inequalities. A benchmark nonlinear UMV system is adopted as an example in simulation, and the simulation results validate the effectiveness of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.