Abstract
Energy Efficiency is a key concern for future fog-enabled Internet of Things (IoT). Since Fog Nodes (FNs) are energy-constrained devices, task offloading techniques must consider the energy consumption of the FNs to maximize the performance of IoT applications. In this context, accurate energy prediction can enable the development of intelligent energy-aware task offloading techniques. In this paper, we present two energy prediction techniques, the first one is based on the Recursive Least Square (RLS) filter and the second one uses the Artificial Neural Network (ANN). Both techniques use inputs such as the number of tasks and size of the tasks to predict the energy consumption at different fog nodes. Simulation results show that both techniques have a root mean square error of less than 3%. However, the ANN-based technique shows up to 20% less root mean square error as compared to the RLS-based technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.