Abstract

Purpose The purpose of this paper is to propose two energy management strategies (EMS) for hybrid electric vehicle, the power system is an hybrid architecture (fuel cell (FC)/battery) with two-converters parallel configuration. Design/methodology/approach First, the authors present the EMS uses a power frequency splitting to allow a natural frequency decomposition of the power loads and second the EMS uses the optimal control theory, based on the Pontryagin’s minimum principle. Findings Thanks to the optimal approach, the control objectives will be easily achieved: hydrogen consumption is minimized and FC health is protected. Originality/value The simulation results show the effectiveness of the control strategy using optimal control theory in term of improvement of the fuel consumption based on a comparison analysis between the two strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call