Abstract

This two part paper proposes an intelligent energy management agent (IEMA) for parallel hybrid vehicles. IEMA incorporates a driving situation identification component whose role is to assess the driving environment, the driving style of the driver and the operating mode of the vehicle using long and short term statistical features of the drive cycle. This information is subsequently used by the torque distribution and charge sustenance components of IEMA to determine the power split strategy, which is shown to lead to enhanced fuel economy and reduced emissions. In Part I, the overall architecture of IEMA is presented and the driving situation identification process is described. It is specifically shown that a learning vector quantization (LVQ) network can effectively determine the driving condition using a limited duration of driving data. The overall performance of the system under a range of drive cycles is discussed in the second part of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.