Abstract

The track tracking effect of intelligent vehicle directly affects the safety of vehicle and passengers. In the process of intelligent vehicle track tracking, the track tracking accuracy is related to many factors such as track curvature, road friction coefficient, and longitudinal speed change. In this paper, a new lateral and longitudinal coupling control algorithm is proposed. Based on the vehicle dynamics model and the optimal control theory, combined with the fuzzy control theory, the Fuzzy Linear Quadratic Regulator (FLQR) lateral optimal controller is designed, and feed-forward control and predictive controller are added. According to the real-time tracking lateral error and fuzzy control algorithm fed back by the system, the weight coefficient of the lateral displacement deviation in the cost function is dynamically adjusted; considering the coupling effect of lateral and longitudinal controllers of vehicle trajectory tracking control, a model predictive control (MPC) longitudinal speed controller is designed based on MPC theory, considering acceleration constraint and acceleration variation constraint, and taking lateral stability as evaluation index. A joint simulation platform is built based on CarSim and Simulink. The simulation results show that the designed lateral and longitudinal coupling controller of FLQR + MPC has better track tracking accuracy and can improve the driving stability of the vehicle; finally, the tracking effect of the designed algorithm is verified by real vehicle experiments. The maximum error of the designed controller algorithm in real vehicle tracking is 0.56 m, and the tracking effect is good.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.