Abstract

The Ball and beam system (BBS) is an attractive laboratory experimental tool because of its inherent nonlinear and open-loop unstable properties. Designing an effective ball and beam system controller is a real challenge for researchers and engineers. In this paper, the control design technique is investigated by using Intelligent Dynamic Inversion (IDI) method for this nonlinear and unstable system. The proposed control law is an enhanced version of conventional Dynamic Inversion control incorporating an intelligent control element in it. The Moore-Penrose Generalized Inverse (MPGI) is used to invert the prescribed constraint dynamics to realize the baseline control law. A sliding mode-based intelligent control element is further augmented with the baseline control to enhance the robustness against uncertainties, nonlinearities, and external disturbances. The semi-global asymptotic stability of IDI control is guaranteed in the sense of Lyapunov. Numerical simulations and laboratory experiments are carried out on this ball and beam physical system to analyze the effectiveness of the controller. In addition to that, comparative analysis of RGDI control with classical Linear Quadratic Regulator and Fractional Order Controller are also presented on the experimental test bench.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.