Abstract

This paper examines and compares several different approaches to design of intelligent systems for diagnosis applications. These include expert systems (or knowledge based systems), truth (or reason) maintenance systems, case based reasoning systems, and inductive approaches like decision trees, neural networks (or connectionist systems), and statistical pattern classification systems. Each of these approaches is demonstrated through the design of a system for a simple automobile fault diagnosis task. The paper also discusses the domain characteristics that influence the choice of a specific technique (or combination of techniques) for a given application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.