Abstract

Early automatic detection of cardiovascular diseases is of great importance to provide timely treatment and reduce fatality rate. Although many efforts have been devoted to detecting various arrhythmias, classification of other common cardiovascular diseases still lacks comprehensive and intensive studies. This work aims at developing an automatic diagnosis system for myocardial infarction, valvular heart disease, cardiomyopathy, hypertrophy, and bundle branch block, based on the clinic recordings provided by PTB Database. The proposed diagnosis system consists of the components as baseline wander reduction, beat segmentation, feature extraction, feature reduction and classification. The selected features are the location, amplitude and width of each wave, exactly the parameters of ECG dynamical model. We also propose a mean shift algorithm based method to extract these features. To demonstrate the availability and efficacy of the proposed system, we use a total of 13,564 beats to conduct a large scale experiment, where only 25% beats are utilized to train the eigenvectors of generalized discriminant analysis in the feature reduction phase and 25% beats are applied to train the support vector machine in the classification phase. The average sensitivity, specificity and positive predicitivity for the test set, containing 75% beats, are respectively 96.06%, 99.32% and 97.29%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.