Abstract
A physical modeling approach was adopted to build a Digital Electro-Hydraulic Control (DEH) system simulation model and the fault models using the SIMULINK tool. This research combined the advantages of the gray system and neural network to build a multi-parameter gray error neural network fault prediction model for the first time. Furthermore, an embedded platform for intelligent fault diagnosis and prediction was developed using an Application Specific Integrated Circuit chip. The results show that the simulation model of the DEH system has good performance. A jam fault, internal leakage, and a device fault could be accurately identified through the fault diagnosis model. The multi-parameter gray error neural network prediction model improves the accuracy of fault prediction. The embedded platform developed by the Application Specific Integrated Circuit chip solves the problem of transmission limitation and insufficient computing power. It realizes the intelligent diagnosis and prediction of DEH system faults and guarantees the regular operation of the DEH system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.